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On the other hand, a similar field matrix Uy may be obtained for
the subregion N which tends to infinity together with y — oc
Hylyy =Uy-Enl, . (10)

Matching the tangential field components of subregions N — 1 and
‘N at ¥y = yn. a characteristic matrix is obtained and frequency-

dependent propagation constants and related field parameters can be
found by solving this determinant equation.

C. Numerical Results

To validate the proposed recursive algorithm, the characteristic
impedance of even and odd modes of a coupled microstrip line
is calculated by using the quasistatic modeling, showing a good
agreement with [11]. Fig. 2 shows the capacitance matrix of a three-
conductor microstrip line. Fig. 3 displays the capacitance matrix of a
four-conductor microstrip line deposited on a segmented multilayer
uniaxial anisotropic substrate. A typical CPU time is 5 min. for the
calculation of this figure on a low-speed HP-400 workstation. The
limiting line spacing used is around 300/mm. The calculated results
change significantly with the normalized height of the segmented
layer t1. It is interesting that the self-capacitances C11. Claq, and Cs
tend to equal each other when the thickness #; approaches zero and
their values diversify as #; becomes large. This can be explained
by the fact that when ¢; — 0, the coupling between the different
strips increases drastically and the coupling effect makes C33 and Clyy
increase faster than C'1; since the dimension s3 is much less than s;.
As the thickness ¢1 increases, the coupling effect diminishes and the
difference between the self-capacitance become more pronounced.

Dispersion characteristics of a coupled microstrip line are also
calculated. Fig. 3 shows dispersion characteristics of different modes
of a microstrip line with four conductors on a segmented multilayered
substrate.

TIT. CONCLUSION

This paper presents a recursive algorithm of the method of lines
based on the vertical discretization [1] for the analysis of multiple
strips or slots on composite multilayered substrates including uni-
axial anisotropic materials. The advantage of this algorithm is that
modeling on arbitrary multiple lines (or slots) is accomplished by a
simple transferring process of the “standard” field matrices from one
strip (or slot) to another. An additional identified advantage compared
to the conventional method of lines is that the order of characteristic
matrix remains always the same regardless of the number of strips
or slots. This is more pronounced when a large number of strips or
slots gets mvolved such as in high-speed interconnects. Our examples
demonstrate potential application to a large class of planar circuits
including complex composite substrates with hollow segments which
were proposed to reduce the field coupling between different strips.
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The Propagation Constant of a Lossy Coaxial
Line with a Thick Outer Conductor

W. C. Daywitt

Abstract—The microwave approximation for the propagation constant
of a coaxial line becomes inaccurate below 1 MHz. An approximation is
presented that is accurate over the entire operating frequency range of
the line.

1. INTRODUCTION

The propagation constant ~ for the principal, transverse magnetic
mode on a lossy coaxial line has been known for many years [1] and
appears in the field equations with the form

F = Fge'~'™° (D

where F represents any one of the principal mode field components,
w the radian frequency, ¢ the time, and z the axial distance along
the line.

An exact calculation of ~ is complicated by the need to solve
the coaxial line determinantal equation involving Bessel functions of
the first and second kinds with complex arguments. Furthermore, the
only approximation for 4 in common usage today is that originally
derived by Stratton [1], a first-order perturbation equation in the
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Fig. 1. Inner conductor correction coefficient Ly (m) for the full range

approximation to the attenuation coefficient.
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Fig. 2. Outer conductor correction coefficient 17 (m) for the full range
approximation to the attenuation coefficient.

conductor skin depth or surface impedance, which is accurate only
in the microwave part of the line’s useful frequency range.

In a 7-mm copper line, for example, this microwave approximation
degrades significantly as the operating frequency falls below 1 MHz.
Fortunately. the magnitudes of the real and imaginary parts of the line
loss corrections to the propagation constant diminish rapidly with
frequency so that even a large relative error in the corrections is
unimportant for many practical applications. This is not always the
case, however, especially in the field of metrology where sound error
analyses [3] are based upon accurate mathematical descriptions.

A fairly recent development [2]' using Stratton’s 1941 equations
outlines a procedure whereby a full frequency range approximation to
the propagation constant can be obtained without too much additional
calculational effort beyond what is required for the microwave ap-
proximation mentioned above. This procedure has been implemented
and the results are presented in what follows.

II. A FuLL RANGE APPROXIMATION FOR ~

The propagation constant for a lossy coaxial line with an infinitely
thick outer conductor can be calculated from the following equation
derived from the results in [2]

v =jke(l+ e — jea)'?,

'Equation (38) in this paper is incorrect and should be replaced by
# = jke(1 — R2/k3)1/2. Equations (40)—(45) should be discarded. The
remaining equations and the results quoted are correct.
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Fig. 3. Inner conductor correction coefficient Us(m) for the full range

approximation to the phase coefficient.

(= L (Vi Tik
'S Inb/a\ 2a 20 )

Lo L (Ui Ussy
2= Inb/a\ 2a 2b

. 1/2
5, = (2‘") 3)
Wit

is the inner (i = 1) or outer (: = 3) conductor skin depth. The
constant kg is the wavenumber within the dielectric (assumed to be
lossless for convenience) occupying region 2 between the conductors;
1 1s the permeability of free space: ¢ and b are the radii of the inner
conductor (region 1) and outer conductor (region 3) respectively; p1
and ps are the resistivities for the inner and outer conductors; and
U1, V1.Us, and V3 are the functions discussed below. Equation (2) is
accurate over the full frequency range of the line (e.g., 0 to 18 GHz
for a 7 mm transmission line).
Writing -~y as « + jJ leads to

where

kQE»v
= = 4
PR E R (§ W I VR R @
and
2, 211/241/2
/3:1@{”61“(1;61) + ] } 5)

where « and 3 are the line’s attenuation and phase coefficients. The
usual microwave approximation to these coefficients is obtained by
expanding (4) and (5) to first order in the €, (¢ = 1.2) while setting
71,V1,Us. and V5 in (2) to unity.

The U and V" functions are obtained from the Ry and R3 functions
in [2] by setting

=14+ 7)

Ui(my) 4+ jVi(my) = W (6)
and
. e _ 4+
Us(ms)+ jVa(ms) = Ty (s e~ 0770y %)
where ( = 1, 3)
51/2
m, = % (8)

and where r1 = a and r3 = b. Plots of the U7 and V' functions versus
m are shown in Figs. 1-4.
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TABLE 1
POLYNOMIAL APPROXIMATION FOR Ut (m)

0<m<0.06

U, =

03/2

m

0.06 <m<0.5

Uy = 0.00717907 + 2.82409 + 0.0002998 _ 0.0003107 n 0.0000054 _ 0.0000001044
m m m m# ms
05<m<1.,5

U, = 0.339869 +

2.01144  0.75945 0.31705  0.0496566
+— - +
m m

m3 m#

1.5<m«<5b

U; = 7.843851 — 9.28113m + 6.162m? — 2.522427m> + 0.67249018m* — 0.11313104m°
+ 0.010809984m5 — 0.00044425172m"

5<m<10

U, = 1.183935 + 0.1010435m — 0.04749808m >
+ 0.007559972m® — 0.000538619m* + 0.00001456081m°

10 < m < 200
U, = 0.9999853 4 - 00036 | 0.36129
m m
200 < m
1
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Fig. 4. Outer conductor correction coefficient V3(m) for the full range
approximation to the phase coefficient.

The R1() and Rs() appearing in (6) and (7) are related to ratios
of first- and third-kind Bessel functions of the complex argument
appearing in the above R()s and are a nuisance to calculate. As
pointed out in [2], however, (6) and (7) can be accurately represented
by polynomial approximations. Such approximations were derived

Fig. 5. The ratios of the microwave to full range approximations of the
attenuation and phase coefficients for a 7-mm line. The calculations assumed
a resistivity of 2 microhm-centimeters.

by regression fitting polynomials to data generated from the exact
functions given in [2] and are presented in Tables I-IV, where the
approximations are accurate to better than 1 part in 10* or 0.01%.
The first and last entries in each table are the leading terms of the
small argument and asymptotic expansions for the Us and V's.
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TABLE 1I
POLYNOMIAL APPROXIMATION FOR Vi (m)

0<m<0.1

- m
T 93/2

Wi

0l<m«l1

Vi = —0.000014 + 0.353774m — 0.001119m? + 0.0024874m® — 0.00249m*

1<m<4

Vy = —0.066604 + 0.57411785m — 0.29303277m? + 0.19966757m> — 0.0728026m*
+0.01203129m° — 0.00074024333m°

4<m<8

. . 259.172 22,15 326.783
V1=0.7867+56T6n171—5696857+ 59.1723 5 8+

m2 m3 mt mb

8 <m< 50

0.00153  0.342954  0.7592
m

V1 = 1.000021 — — 3

50<m

3
=1-
£ 8m?

TABLE III
POLYNOMIAL APPROXIMATION FOR Uz (m)

0<m<0.01

mm

U3=23T

0.0l<m<01

Us = —0.000009454 + 1.11299m — 0.26823m? — 5.955m°
+ 34.02m* — 82m5

0l<m<1

Us = —0.0013002 + 1.156549m — 0.934815m? + 0.1536m* + 0.82777m*
- 1.1821m® + 0.71657m® — 0.17026m

1<m<100
0.7089912 40114 0.1544 0.0282
U; = 1.00003 — +002 5_ T + 8438
m m m m

100 <m
1

Ua=1- 37,

III. DIscussION B (pr = p3s = 2 microhm-cm) at the upper frequency limit of the

The expressions for €1 and ez in (2) lead to accuracies in (4) and  line (18 GHz in 7mm line) with the approximations becoming rapidly
(5) that are better than 1 part in 10° for & and 1 part in 10*® for more accurate as the frequency decreases below this limit (see Fig.
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TABLE IV
POLYNOMIAL APPROXIMATION FOR V3(m)

0 < m < 0.001

o 2% m log,4[2/m exp(0.5772156649)]
Y =

log;o(e)

0001 <m<01

z = mlog(m)

Vi = —0.00001499 — 3.310182z + 2.0287z2 + 45.492% + 1137.72*
+172852° + 1661602° + 879300z + 2024000z°

01<m<03

Vs = 0.063389134 + 3.7351412m — 11.108569m” + 21.167468m> — 17.945046m*

03<m«1

0.018285424  0.004462092 + 0.0003841

Vs — 1035053 _ 1636453 _ 001473003
m m?2 m3 mi b

1<m<40
0013935  0.3573739  0.4388015  0.2972413  0.088049

Vs = 100003 - 22019985 0307879 S015 _ 02972413, 00880
m m m m m
40< m
3
Vo=l-g5

8 in [2]). Furthermore, the polynomial approximations for the Us
and Vs found in Tables I-IV are accurate to better than 1 part in
10*. Therefore, the I’ and 17 errors dominate and (4) and (5) can be
counted on to be accurate to better than 1 part in 10* over the full,
usable, transmission line frequency range. These errors are scaled by
(p/ 2)1/2 for conductor resistivities other than 2 microhm-cm.

The microwave approximations, ag and /o, for the attenuation and
phase coefficients are obtained from (4) and (5) by setting the U7 and
V' functions in (2) to unity and expanding (4) and (5) to first order
in the €,

P

)]

op ~
and

do = k(14 5) (10)

where

_ 1 (b8
" lnbfa\2a 20}
The full-range and microwave approximations are compared in Fig.

5, where the solid curve is the ratio «o /o and the dotted curve is
the ratio (Fo — k2)/ (8 — ka2).

an

€1 = €2
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